Question (1)

(a) [25 marks] Solve the following differential equations using any method
i. $\quad \frac{d i(t)}{d t}+i(t)=t, \quad i(0)=c$
ii. $\left(4 x y+3 y^{2}-x\right) d x+x(x+2 y) d y=0$
iii. $\left(x^{2}-x y+y^{2}\right) d x-x y d y=0$
iv. $y^{\prime \prime}-4 y^{\prime}+3 y=10 e^{t}, \quad y(0)=0, y^{\prime}(0)=-3$
v. $\left(D^{3}+6 D^{2}+12 D+8\right) y=e^{-2 t}, \quad y(0)=1, y^{\prime}(0)=-2, y^{\prime \prime}(0)=4$
(b) [5 marks] Solve the following system

$$
x^{\prime}-x+5 y^{\prime}=-1, y^{\prime}-4 y-2 x=-2, \text { where } \quad x(0)=y(0)=0
$$

Question (2)
(a) [12 marks] Evaluate
i. $\int_{0}^{\infty} e^{-t} \frac{(\cos t-1)}{t} d t$
ii. $L^{-1}\left[e^{-3 s} \frac{s}{\left(s^{2}+1\right)^{2}}\right]$
iii. $D^{\alpha} t^{3}, \quad 0<\alpha<1$
(b) [12 marks] If the voltage drop across the inductor is modeled by $L D^{\alpha} i(t)$, $0<\alpha \leq 1$ where L is the inductance, D^{α} is Caputo fractional derivative operator.
i. Prove that the current across the R-L circuit is given by

$$
\begin{aligned}
& i(t)=c t^{\alpha-1} E_{\alpha, \alpha}\left(-t^{\alpha}\right)+t^{\alpha+1} E_{\alpha, \alpha+2}\left(-t^{\alpha}\right) . \quad 0<\alpha \leq 1 \\
& \quad[L=1(H), R=1(\Omega), i(0)=c, \text { and } V(t)=t]
\end{aligned}
$$

ii.Obtain $i(t)$ for $\alpha=1$, and compare with the solution of problem (1-a-i)
(c) [6 marks] Explain the difference between $D^{1} y\left(t_{0}\right)$ and $D^{\alpha} y\left(t_{0}\right), 0<\alpha<1$

Note: you may to need these relations through the exam

$L^{-1}\left[\frac{s^{\alpha-\beta}}{s^{\alpha}+a}\right]=t^{\beta-1} E_{\alpha, \beta}\left(-a t^{\alpha}\right), \quad z^{2} E_{1,3}(z)=e^{z}-z-1, \quad(s+2)^{3}=s^{3}+6 s^{2}+12 s+8$
3. Given the function $\varphi(x, y)=e^{-x^{2} y+1}$ and the point $p=(1,1)$.
(a) [5 pts] Given that $\int_{0}^{\infty} e^{-x^{2}} d x=\frac{\sqrt{\pi}}{2}$. Find $I=\int_{0}^{\infty} \varphi(x, y) d x$.
(b) [5 pts] Expand $\varphi(x, y)$ in a Taylor series about the point p.
(c) $[5 \mathrm{pts}]$ Let S be the surface $g(x, y, z)=0$, where $g(x, y, z)=\varphi(x, y)-z$, and let $q=\left(1,1, z_{0}\right)$ be a point on S. Use the results obtained in part (b) to get the following at the point q :
i. The equation of the normal line to S.
ii. The equation of the Tangent plane to S.
iii. The gradient of $g(x, y, z)$.
iv. The maximum rate of change of $g(x, y, z)$ and its direction.
v. $\frac{\partial y}{\partial x}$ by applying the implicit differentiation rule to $g(x, y, z)=0$.
(d) [5 pts] Let $x=r \cos \theta, y=r \sin \theta$. Applying the chain rule to evaluate φ_{r} and φ_{θ}, substitute with x and y to write your results in terms of r and θ. Finally show that $\varphi_{r r}=\varphi_{x x}+\varphi_{y y}+2 \varphi_{x y} x_{r} y_{r}$.
(e) $[5 \mathrm{pts}]$ Evaluate $\int_{0}^{1} \int_{1 / \sqrt{y}}^{\infty} \varphi(x, y) d x d y+\int_{1}^{\infty} \int_{1}^{\infty} \varphi(x, y) d x d y$.
(g) $[5 \mathrm{pts}]$ Use Euler's theorem to evaluate
i. $x \varphi_{x}+y \varphi_{y}$,
ii. $x^{2} \varphi_{x x}+2 x y \varphi_{x y}+y^{2} \varphi_{y y}$.
(f) $[7 \mathrm{pts}]$ Find the extreme values of $h(x, y)=\varphi(x, y) \sin x$ on the region $R: y \geq 0,-\frac{\pi}{2} \leq x \leq \frac{\pi}{2}, x^{2} y^{2} \leq 1$.

4. Consider the vector field $F=2 y(z+4) i+j+(x y+3 z) k$ and the volume $R: x^{2}+y^{2}+(z+4)^{2} \leq 25, z \geq 0$.
(a) $[5 \mathrm{pts}]$ Verify Green's theorem for the vector field F and the lower surface of R.
(b) $[7 \mathrm{pts}]$ Verify Stokes' theorem for the vector field F and the upper surface of R.
(c) $[11 \mathrm{pts}]$ Verify Gauss' theorem for the vector field F and the volume R.

