Mansoura University Faculty of Engineering	Mathematics 3	Final Exam, Jan. 2011 Time Allowed: 3 Hours.
Math. & Eng. Physics. Dept.	. برجاء بدء إجابة كل فر	يتألف الإختبار من ٤ أسئلة في صفحتين

st_

Question (1)

(a) [25 marks] Solve the following differential equations using any method

i.
$$\frac{di(t)}{dt} + i(t) = t$$
, $i(0) = c$
ii. $(4xy + 3y^2 - x)dx + x(x + 2y)dy = 0$
iii. $(x^2 - xy + y^2)dx - xy dy = 0$
iv. $y'' - 4y' + 3y = 10e^t$, $y(0) = 0$, $y'(0) = -3$
v. $(D^3 + 6D^2 + 12D + 8)y = e^{-2t}$, $y(0) = 1$, $y'(0) = -2$, $y''(0) = 4$

(b) [5 marks] Solve the following system

$$x' - x + 5y' = -1$$
, $y' - 4y - 2x = -2$, where $x(0) = y(0) = 0$

Question (2)

(a) [12 marks] Evaluate

i.
$$\int_{0}^{\infty} e^{-t} \frac{(\cos t - 1)}{t} dt$$
 ii. $L^{-1} \left[e^{-3s} \frac{s}{(s^2 + 1)^2} \right]$ iii. $D^{\alpha} t^3, \quad 0 < \alpha < 1$

(b) [12 marks] If the voltage drop across the inductor is modeled by $LD^{\alpha}i(t)$,

 $0 < \alpha \le 1$ where L is the inductance, D^{α} is Caputo fractional derivative operator.

i. Prove that the current across the R-L circuit is given by

$$i(t) = ct^{\alpha - 1}E_{\alpha,\alpha}\left(-t^{\alpha}\right) + t^{\alpha + 1}E_{\alpha,\alpha + 2}\left(-t^{\alpha}\right). \quad 0 < \alpha \le 1$$
$$[L = 1 (H), R = 1 (\Omega), i(0) = c, \text{ and } V(t) = t]$$

- ii.Obtain i(t) for $\alpha = 1$, and compare with the solution of problem (1-a-i)
- (c) [6 marks] Explain the difference between $D^{1}y(t_{0})$ and $D^{\alpha}y(t_{0})$, $0 < \alpha < 1$

Note: you may to need these relations through the exam

$$L^{-1}\left[\frac{s^{\alpha-\beta}}{s^{\alpha}+a}\right] = t^{\beta-1}E_{\alpha,\beta}\left(-at^{\alpha}\right), \quad z^{2}E_{1,3}\left(z\right) = e^{z}-z-1, \quad (s+2)^{3} = s^{3}+6s^{2}+12s+8$$

- 3. Given the function $\varphi(x, y) = e^{-x^2y+1}$ and the point p = (1,1).
 - (a) [5 pts] Given that $\int_0^\infty e^{-x^2} dx = \frac{\sqrt{\pi}}{2}$. Find $I = \int_0^\infty \varphi(x, y) dx$.
 - (b) [5 pts] Expand $\varphi(x, y)$ in a Taylor series about the point p.
 - (c) [5 pts] Let S be the surface g(x, y, z) = 0, where $g(x, y, z) = \varphi(x, y) z$, and let $q = (1, 1, z_0)$ be a point on S. Use the results obtained in part (b) to get the following at the point q:
 - i. The equation of the normal line to *S*.
 - ii. The equation of the Tangent plane to S.
 - iii. The gradient of g(x, y, z).
 - The maximum rate of change of q(x, y, z) and its direction. iv.
 - $\frac{\partial y}{\partial x}$ by applying the implicit differentiation rule to g(x, y, z) = 0. V.
 - (d) [5 pts] Let $x = r \cos \theta$, $y = r \sin \theta$. Applying the chain rule to evaluate φ_r and φ_{θ} , substitute with x and y to write your results in terms of r and θ . Finally show that $\varphi_{rr} = \varphi_{xx} + \varphi_{yy} + 2\varphi_{xy}x_ry_r$.
 - (e) [5 pts] Evaluate $\int_0^1 \int_{1/\sqrt{y}}^\infty \varphi(x, y) dx dy + \int_1^\infty \int_1^\infty \varphi(x, y) dx dy$.
 - (g) [5 pts] Use Euler's theorem to evaluate

 - i. $x\varphi_x + y\varphi_y$, ii. $x^2\varphi_{xx} + 2xy\varphi_{xy} + y^2\varphi_{yy}$.
 - (f) [7 pts] Find the extreme values of $h(x, y) = \varphi(x, y) \sin x$ on the region $R: y \ge 0, -\frac{\pi}{2} \le x \le \frac{\pi}{2}, x^2 y^2 \le 1.$

- 4. Consider the vector field F = 2y(z+4)i + j + (xy+3z)k and the volume $R: x^2 + v^2 + (z+4)^2 \le 25, z \ge 0.$
 - (a) [5 pts] Verify Green's theorem for the vector field F and the lower surface of R.
 - (b) [7 pts] Verify Stokes' theorem for the vector field F and the upper surface of R.
 - (c) [11 pts] Verify Gauss' theorem for the vector field F and the volume R.

I. A. El-Awadi